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Introduction 

The Navier-Stokes 
equations changed 
the world! 
 
 
They are introduced 
among the 17 more 
important equations 
of all history 



Historical Background 
Claude-Louis Navier (1822) Sir George G. Stokes (1845) 

His approach was based on: 
 

• Molecular view of the fluid 
 

• Incompressible fluids 

He indipendently derived the 
equations by assuming: 
 

• Continuum hypothesis model 
 

• Viscous action 



Nowadays 

• Still one of the seven unsolved             
problems of modern mathematics 

• The Clay Mathematics 
Institute will award anyone 
who will solve it with a 1 
million dollar prize 



• Conservation of Mass 
 
 

• Balance of Momentum 
 

 
• Conservation of Energy 

 
 
 

• Equation of state 
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• Conservation of Mass  

 

 
• Balance of momentum 

 

 

 
 

4 unknowns             4 equations 
 
 

Governing equation of a fluid flow 
Incompressible fluids Compressible fluids 
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Derivation of the Equation 
 

From Reynolds transport theorem: 

 
 
• Body forces 
• Surface forces 
 

 

Applying the Divergence Theorem we obtain: 
 

 
Where Σ is the stress tensor composed of an isotropic and 

deviatoric part 
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Substituting the Constitutive model for a Newtonian fluid in the 
previous expression 

 
 
 

• Stress is a linear function of the rate of deformation 
• Homogeneous and isotropic material 
• μ  is the dynamic viscosity, assumed to be space indipendent 
 

We obtain the Navier-Stokes equations: 

 
 
 

   Under the hypothesis of an incompressible flow  
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Presentation of the problem 
• The Navier-Stokes equations are a set of non-linear partial 

differential equations 
 

• Their analytical solution is not always possible 
 

My analysis was carried out according to the following 
characteristics: 

 

 Parallel flow: only one velocity component different from zero. 
Given a velocity field                     then  

 

 Unsteady flow:  
 

 Gravitational forces were neglected 
 Laminar flow 
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Cases Analysed 

1. Stokes’s First Problem 

 
2. Stokes’s Second Problem 

 
3. Womersley’s Flow 



 

Flow near a flat plate initially at rest suddenly accelerated 
to a constant velocity U0 

 

Boundary Conditions 
 
 
 

Governing equation 
 
 

 

    U0 

Stokes’s first problem 
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Infinite plate 



The expected function is 
 

• Adimensional group 
 

• Chain rule  

 
 

 

Differential equation:                                               
 
 

Strategy 
 
 
 

noting that                               we obtain 
 

By separation of variables: 
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 with new boundary conditions 



Apply boundary conditions: 
 
 
 

    Final Solution 
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•                   is the 
complementary error function 
 
 

 
•Values can be found in tables 
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Stokes’s second problem 
 

Flow about an infinite plate moving with linear harmonic 
oscillations 

 

Boundary Conditions 
 

•   
•   
 
Governing equation 
Same conditions as in the previous case, same starting differential equation 
 

 
 
Expected solution: 
 

)cos(),0( 0 tUtu ω=
0),( =∞→ tyu

2

2

y
u

t
u

∂
∂

=
∂
∂ ν

{ }te)y(FRe)t,y(u ιω−=

U0  cos(ωt) 

y 

Infinite plate 



Substitutions: 
 
 
 
 

 
 
 
 

 

 
Solution 
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2° order differential equation 

Strategy 



Substituting in our initial guess 

Final Solution 
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• The velocity profile has 
the shape of a damped 
harmonic oscillation 
 

• Depth of penetration  
 

• Lag between a layer near 
the plate and one at 
distance y 
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Womersley’s flow 
 

Fluid flow in a cylinder of radius R and length L with a periodic 
pressure gradient 

 
 
 
 
The Navier-Stokes equations written in the cylindrical coordinates 

are needed: 
• Given a flow, the only remaining component is uz 
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   Governing equation                            Boundary condition 
 
 
 
 

 
 

Mathematical manipulations: 
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  Expected solution 
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Modified Bessel Equation of Zero Order 

Resulting Differential Equation Change of Variable 

Apply B.C. 



Conclusions 
Engineering Applications: 

 
 
Environmental flows: 
 

• Flow over the ocean bed 
 

• Sediment transport 
mechanics 

Biological flows: 
 

• Model of motion of the blood in 
straight arteries 
 

• Womersley’s number    
 ν
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Thanks for the attention! 
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