Università di Roma Tor Vergata Engineering Sciences

Mathematical analysis of some exact unsteady solutions of the Navier-Stokes $\begin{array}{c} \partial t & \partial x & \textbf{Equations} \\ \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial z}{\partial z} \right) = - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) + \rho g_y \\ \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) = - \frac{\partial p}{\partial y} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) + \rho g_y \\ \left(\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial t} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial y} \right) = - \frac{\partial p}{\partial t} + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial y^2} \right) + \rho g_y \\ \end{array}$

Giorgio Fagioli Supervisor: Prof. Roberto Verzicco

Introduction

The Navier-Stokes equations changed the world!

They are introduced among the 17 more important equations of all history

	17 Equations That Changed the World by Ian Stewart		
1.	Pythagoras's Theorem	$a^2 + b^2 = c^2$	Pythagoras,530 BC
2.	Logarithms	$\log xy = \log x + \log y$	John Napier, 1610
3.	Calculus	$\frac{\mathrm{d}f}{\mathrm{d}t} = \lim_{h\to 0} \frac{f(t+h)-f(t)}{h}$	Newton, 1668
4.	Law of Gravity	$F = G \frac{m_1 m_2}{r^2}$	Newton, 1687
5.	The Square Root of Minus One	$i^2 = -1$	Euler, 1750
6.	Euler's Formula for Polyhedra	V-E+F=2	Euler, 1751
7.	Normal Distribution	$\Phi(x) = \frac{1}{\sqrt{2\pi\rho}} e^{\frac{(x-\mu)^2}{2\rho^2}}$	C.F. Gauss, 1810
8.	Wave Equation	$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	J. d'Almbert, 1746
9.	Fourier Transform	$f(\omega) = \int_{\infty}^{\infty} f(x) e^{-2\pi i x \omega} \mathrm{d} x$	J. Fourier, 1822
10.	Navier-Stokes Equation	$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v}\cdot\nabla\mathbf{v}\right) = -\nabla p + \nabla\cdot\mathbf{T} + \mathbf{f}$	C. Navier, G. Stokes, 1845
11.	Maxwell's Equations	$ \begin{split} \nabla \cdot \mathbf{E} &= \frac{\rho}{\rho_*} & \nabla \cdot \mathbf{H} = 0 \\ \nabla \times \mathbf{E} &= -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} & \nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial E}{\partial t} \end{split} $	J.C. Maxwell, 1865
12.	Second Law of Thermodynamics	$\mathrm{d}S\geq 0$	L. Boltzmann, 1874
13.	Relativity	$E = mc^2$	Einstein, 1905
14.	Schrodinger's Equation	$i\hbar\frac{\partial}{\partial t}\Psi=H\Psi$	E. Schrodinger, 1927
15.	Information Theory	$H = -\sum p(x)\log p(x)$	C. Shannon, 1949
16.	Chaos Theory	$x_{t+1} = kx_t(1 - x_t)$	Robert May, 1975
17.	Black-Scholes Equation	$\frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - rV = 0$	F. Black, M. Scholes, 1990

Historical Background

Claude-Louis Navier (1822)

Sir George G. Stokes (1845)

His approach was based on:

- Molecular view of the fluid
- Incompressible fluids

He indipendently derived the equations by assuming:

- Continuum hypothesis model
- Viscous action

Nowadays

• Still one of the seven unsolved problems of modern mathematics

• The Clay Mathematics Institute will award anyone who will solve it with a 1 million dollar prize

Governing equation of a fluid flow

Incompressible fluids

Conservation of Mass

$$\frac{DM}{Dt} = 0$$

Balance of momentum

4 unknowns ----- 4 equations

Compressible fluids

Conservation of Mass

Balance of Momentum

$$\frac{D\vec{P}}{Dt} = \sum \vec{F}$$

• Conservation of Energy

$$\boxed{\frac{DE}{Dt} = \dot{Q} + \dot{L}}$$

• Equation of state

Derivation of the Equation

From Reynolds transport theorem:

$$\frac{DP}{Dt} = \int_{V} \frac{\partial(\rho \vec{u})}{\partial t} dV + \int_{S} \rho \vec{u} (\vec{u} \cdot \hat{n}) dS = \vec{F}_{B} + \vec{F}_{S}$$

- Body forces $\vec{F}_B = \int_V \rho \vec{f} dV$
- Surface forces $\vec{F}_{S} = \int_{S} \underline{\Sigma} \cdot \hat{n} dS$

Applying the Divergence Theorem we obtain:

$$\frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}) = \rho \vec{f} + \nabla \cdot \underline{\Sigma}$$

Where $\underline{\Sigma}$ is the stress tensor composed of an isotropic and deviatoric part

$$\underline{\Sigma} = -p\underline{I} + \underline{\tau}$$

Substituting the Constitutive model for a Newtonian fluid in the previous expression

$$\underline{\tau} = 2\mu \underline{E} - \frac{2}{3}\mu (\nabla \cdot \vec{u})\underline{I}$$

- Stress is a linear function of the rate of deformation
- Homogeneous and isotropic material
- μ is the dynamic viscosity, assumed to be space indipendent

We obtain the Navier-Stokes equations:

$$\rho \frac{D\vec{u}}{Dt} = -\nabla p + \rho \vec{f} + \frac{\mu}{3} \nabla (\nabla \cdot \vec{u}) + \mu \nabla^2 \vec{u}$$

Under the hypothesis of an incompressible flow $\nabla \cdot \vec{u} = 0$

$$\rho \frac{D\vec{u}}{Dt} = -\nabla p + \rho \vec{f} + \mu \nabla^2 \vec{u}$$

Presentation of the problem

- The Navier-Stokes equations are a set of non-linear partial differential equations
- Their analytical solution is not always possible

My analysis was carried out according to the following characteristics:

> **Parallel flow**: only one velocity component different from zero. Given a velocity field $\vec{u} = \vec{u}(u, v, w)$ then v = w = 0

> Unsteady flow:
$$\frac{\partial(\cdot)}{\partial t} \neq 0$$

- > Gravitational forces were neglected
- > Laminar flow

Cases Analysed

1. Stokes's First Problem

2. Stokes's Second Problem

3. Womersley's Flow

Stokes's first problem

Flow near a flat plate initially at rest suddenly accelerated to a constant velocity U_0

Boundary Conditions

$$u(0) = \begin{cases} Uo & t > 0 \\ 0 & t < 0 \end{cases} \qquad u(y \to \infty) = 0$$

Governing equation

$$\left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}\right) = -\frac{1}{\rho} \frac{\partial P}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$
$$\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial y^2}$$

The expected function is

$$u = U_0 f(y, t, v)$$

- Adimensional group $\eta = \frac{y}{2\sqrt{vt}}$ \longrightarrow $u = U_0 f(\eta)$
- Chain rule

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial t} = -\frac{\eta}{4t} U_0 f'(\eta)$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \eta^2} \left(\frac{\partial \eta}{\partial t}\right)^2 = \frac{1}{4\nu t} U_0 f''(\eta)$$

Differential equation:

 $f^{''} + 2\eta f^{'} = 0$ with new boundary conditions

Strategy

noting that $\frac{d}{d\eta} \left(log \left(\frac{df}{d\eta} \right) \right) = \frac{f''}{f'}$ we obtain $\frac{d}{d\eta} \left(log \left(\frac{df}{d\eta} \right) \right) = -2\eta$

By separation of variables:

$$f(\eta) = \int_0^{\eta} c_1 e^{-\eta^2} d\eta + c_2$$

Apply boundary conditions:

$$\begin{array}{ccc} f(0) = 1 & \longrightarrow & c_2 = 1 \\ f(\eta \to \infty) = 0 & \longrightarrow & c_1 = -\frac{2}{\sqrt{\pi}} \end{array}$$

Final Solution

Stokes's second problem

Flow about an infinite plate moving with linear *harmonic oscillations*

Governing equation

Same conditions as in the previous case, same starting differential equation

$$\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial y^2}$$

Expected solution:

$$u(y,t) = Re\left\{F(y)e^{-\iota\omega t}\right\}$$

Substitutions:

2° order differential equation

Strategy

Solution $F(y) = c_1 e^{\kappa(i-1)y} + c_2 e^{-\kappa(i-1)y}$

Apply the new Boundary Conditions $\begin{cases} F(0) = U_0 & \longrightarrow & c_1 = U_0 \\ F(y \to \infty) = 0 & \longrightarrow & c_2 = 0 \end{cases}$ Substituting in our initial guess $u(y,t) = Re \left\{ U_0 e^{-\kappa y} e^{(\omega t - \kappa y)i} \right\}$

Final Solution

$$u(y,t) = U_0 e^{-\kappa y} \left[\cos(\omega t - \kappa y) \right]$$

- The velocity profile has the shape of a damped harmonic oscillation
- Depth of penetration $\delta = \frac{2\pi}{\kappa}$
- Lag between a layer near the plate and one at distance y

Womersley's flow

The Navier-Stokes equations written in the cylindrical coordinates are needed:

• Given a flow, the only remaining component is u_z

$$\vec{u} = (u_r, u_\theta, u_z)$$

$$\left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_z}{\partial \theta} + u_z \frac{\partial u_z}{\partial z}\right) = f_z - \frac{1}{\rho} \frac{\partial P}{\partial z} + \nu \left(\frac{\partial^2 u_z}{\partial r^2} + \frac{1}{r} \frac{\partial u_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} + \frac{\partial^2 u_z}{\partial z^2}\right)$$

Conclusions

Engineering Applications:

Environmental flows:

- Flow over the ocean bed
- Sediment transport mechanics

Biological flows:

 Model of motion of the blood in straight arteries

• Womersley's number $Wo = r_1 \sqrt{\frac{\omega}{v}}$

Thanks for the attention!