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Historical Background

Claude-Louis Navier (1822) Sir George G. Stokes (1845)

His approach was based on: He indipendently derived the

e Molecular view of the fluid equations by assuming:

° |ncompressib|e fluids e Continuum hypOthESiS model

e \VViscous action



Nowadays

e Still one of the seven unsolved
problems of modern mathematics

* The Clay Mathematics
Institute will award anyone
who will solve it with a 1
million dollar prize




Governing equation of a fluid flow

Incompressible fluids

e Conservation of Mass

CE

e Balance of momentum

oz

4 unknowns === 4 equations

Compressible fluids

e Conservation of Mass

&

e Balance of Momentum
[ PP _se J
Dt

e Conservation of Energy

DE : -
[EE‘Q+LJ

e Equation of state




Derivation of the Equation

From Reynolds transport theorem:

DP o(pl) O
F‘[ LTdV +jSpU(U'n)dS—FB+FS

 Body forces Fe = L ofdv
* Surface forces F, = J'S;- AdS

Applying the Divergence Theorem we obtain:
opu
ot

Where % is the stress tensor composed of an isotropic and
deviatoric part

+V-(ptl) = pf +V-Z

=-pl+z



Substituting the Constitutive model for a Newtonian fluid in the
previous expression

T = Zﬂé—éu(V-U)L

e Stress is a linear function of the rate of deformation
e Homogeneous and isotropic material
e u is the dynamic viscosity, assumed to be space indipendent

We obtain the Navier-Stokes equations:

,()[[))—LtJ =-Vp+ pf +§V(V 0)+ uV°

Under the hypothesis of an incompressible flow V-U =0
DU = _
IOE = —Vp +pf +,LIV2U



Presentation of the problem

 The Navier-Stokes equations are a set of non-linear partial
differential equations

e Their analytical solution is not always possible

My analysis was carried out according to the following
characteristics:

> Parallel flow: only one velocity component different from zero.
Given a velocity field U=0(u,v,w) thenv=w=0

> Unsteady flow: it) =0

o
> Gravitational forces were neglected
> Laminar flow



Cases Analysed

1. Stokes’s First Problem

2. Stokes’s Second Problem

3. Womersley’s Flow



Stokes’s first problem

Flow near a flat plate initially at rest suddenly accelerated

to a constant velocity U, A
t<0
Boundary Conditions 4=
Uo t>0 Infinite plate
u(0) = u(ty >o)=0
0) { 0 t<0 (y > )

Governing equation
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The expected function is u=U,f(ytv)

: : y _
. =—= > u=U,f
Adimensional group 7 It o T (1)
e Chainrule
ou _ éu an _ o°u  o°u (877)2 1 .
= -~ U, f
ot on ot Yot & onlat) “am el U1
Differential equation: f +2nf =0
with new boundary conditions
Strategy
d [Iog(df B: £ d 0o/ SV 5
noting that 4| “(dy))” f weobtain /| "9 1

By separation of variables:

f (1) = jon cedn+c,



Apply boundary conditions:

f(0) =1 c, =1
2
f(?]—)OO)ZO Cl:_ﬁ
Final Solution

u(n)=U, (1——j e~ dnj U erfe(n)

\ . erfe(r) isthe
' complementary error function

T erfe(n) =1—erf ()

*VValues can be found in tables



Stokes’s second problem

Flow about an infinite plate moving with linear harmonic
oscillations

A

Boundary Conditions Y

° U(O’t) — Uo COS(a)t) Infinite plate

* U(y > omo,t)=0

—
. . U, cos(wt)
Governlng equation
Same conditions as in the previous case, same starting differential equation

ou o°u
— =V
ot oy*

Expected solution: u(y,t)= RG{F( Y)e_mt}



Substitutions:

a l-zj a F(y) U F (y)e—za)t 6U aI:(y) U F( la))e -t
oy ot
Ly il o
2° order differential equation
Strategy
Characteristic polynomial .
I ; ] :
2412 _g > A=t |12 1i@+i), |2 = (i -1)
1% 1% 2V T
Solution F(y)=ce '™ +c,e "

Apply the new Boundary { FO=U, —> ¢ =U,

Conditions F(y - ) =0 c, = 0



Substituting in our initial guess u( y,t) = Re{U oe_Kye(wt_Ky)i }

Final Solution

u(y,t)=U,e™|cos(at — xy)]

* The velocity profile has
the shape of a damped
harmonic oscillation
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* Depth of penetration & = — |

e Lag between a layer near
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Womersley’s flow

Fluid flow in a cylinder of radius R and length L with a periodic

pressure gradient Z—P = —pKe'™
Z

The Navier-Stokes equations written in the cylindrical coordinates

are needed:

* Given a flow, the only remaining component is u,

u=(u,,u,u,)
( oy M\ 1P (O, 1o, 1 u,
/ar /ae o1 ) /) p oz or’ r or ;/592 /é(zz
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Governing equation Boundary condition

2
ou _Ke.wt+v(a . +18_uj * No-slip condition: u(r=R,t)=0
ot or: ror

Expected solution

Mathematical manipulations:

o) —>-—>-

.6_u oV (r)e'” . x_r
ot . r_ 1%
U . Y ,dv  dv dx

_\/7" ot —
* o =Vi(rje dr dx dr



Resulting Differential Equation Change of Variable

2
XZV"+xV'—x2V:—K_X— V =V +_E
i iw

XV +xV —x/ =0

Modified Bessel Equation of Zero Order

u(r,t)= e‘“’t[Alo[r 'w}rKj
| %4 N0

Apply B.C.

lw | —lw
K Io[r vj K Jo(rw/v
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Conclusions

Engineering Applications:

Environmental flows:
* Flow over the ocean bed

e Sediment transport
mechanics

Biological flows:

 Model of motion of the blood in
straight arteries

0,
e Womersley’s number Wo = rN/—
| %



Thanks for the attention!
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