STATE OF CHARGE CONTROL FOR RENEWABLE ENERGY FED MICROGRIDS

ENGINEERING SCIENCES AA. 2013-2014

Supervisor Mulone Vincenzo Co-Advisor Spagnolo Francesco Student Brambilla Davide

Domestic micro-grid

OBJECTIVE:

- Exploit as much as possible renewable energy
- **Reduce cost CONSTRAIN**
- Maintain Comfort

RBC & MPCPros & cons

BASELINE MICROGRID CONTROL STRATEGY

RBC

VS

RULED BASED CONTROL

- Current state
- Start/stop Fuel Cell & HVCA
- If condition

Expect:

- HIGH variability operating conditions
- Not optimal fuel cell use

ADVANCED MICROGRID CONTROL STRATEGY

MODEL PREDICTIVE CONTROL

- Past, present, future state: Use <u>weather forecast</u>
- Control Fuel Cell & HVCA at PARTIAL LOAD
- Need a system model & Optimization algorithm

Expect:

- SOFT variability operating conditions
- High efficiency

RBC & MPC SIMULATION RESULTS

MPC EXPERIMENTAL SET UP

PERSONAL OBJECTIVE

Determine the State of Charge (SoC)

- 1. PROPORTIONAL to OCV.
- 2. OCV cannot be directly measured, if system is working.
- 3. Other measure: CURRENT CCV (close circuit voltage)
- 4. Also them have measuring errors
- ...so, let's see how to proceed!

SoC evaluation

Battery modeling

ELECTRIC CIRCUITAL MODEL

Need to calculate R1 R2 and C2

SoC evaluation Battery characterization

0

1000

2000

DYNAMICS DISCHARGE TEST:

- Current step
- Relaxation time
- Acquire data (Labview)
- Post process (Matlab)

ALGEBRIC STEPS:

 $R1 = \frac{VINITIAL - VLOW}{CURRENT}$

Rint = VFINAL - VLOW CURRENT

R2 = Rint - **R1**

C2 = tau / R2

IMPULSE CURRENT REQUEST load

VOLTAGE ANSWER MEASURED

TIME

4000

5000

6000

7000

3000

SoC evaluation Battery characterization RESULTS

SoC evaluation Initialization error

SoC evaluation STATE OBSERVER

SoC evaluation

Conclusions

- MPC better than RBC
- Key role: SoC measurement
- A simple but accurate model, to measure SoC has been presented
- Results are encouraging as SOC measurement capabilities have been demonstrated